skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ratner, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Active particles in composite electrodes initially show asynchronous activity that evolves toward synchronous behavior. 
    more » « less
  2. Abstract Understanding the behavior of lithium‐ion batteries (LIBs) under extreme conditions, for example, low temperature, is key to broad adoption of LIBs in various application scenarios. LIBs, poor performance at low temperatures is often attributed to the inferior lithium‐ion transport in the electrolyte, which has motivated new electrolyte development as well as the battery preheating approach that is popular in electric vehicles. A significant irrevocable capacity loss, however, is not resolved by these measures nor well understood. Herein, multiphase, multiscale chemomechanical behaviors in composite LiNixMnyCozO2(NMC,x +y +z = 1) cathodes at extremely low temperatures are systematically elucidated. The low‐temperature storage of LIBs can result in irreversible structural damage in active electrodes, which can negatively impact the subsequent battery cycling performance at ambient temperature. Beside developing electrolytes that have stable performance, designing batteries for use in a wide temperature range also calls for the development of electrode components that are structurally and morphologically robust when the cell is switched between different temperatures. 
    more » « less